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Computation of Resonant Frequencies
of Cylindrical Ferrite Resonators

Using GIBC’s

Myung Jin Kong and Benjamin Beker

Abstract—A computational approach for resonant frequencies of cylin-
drical substrate-mounted resonators is presented in this paper. The
resonator is made of ferrite material, which is magnetically anisotropic
and characterized by a Hermitian tensor. It is mounted on top of a
grounded dielectric substrate, and the entire assembly is covered with
a tuning plate, leaving the sidewalls open. The generalized impedance
boundary conditions (GIBC’s) are derived for the ferrite material and
are used to formulate the approximate solution to the boundary-value
problem. The resulting transcendental equations are solved numerically,
and variations of the resonant frequency with respect to bias field,
magnetization, and dimensions of the structure are reported.

Index Terms—Cylindrical resonators, ferrites, GIBC’s.

I. INTRODUCTION

Early microwave communication systems made wide use of metal-
lic waveguides as filter elements. With the advent of microwave
integrated circuit (MIC) technology, bulky waveguide filters were
replaced with smaller microstrip-type circuit elements. Microwave
characteristics of numerous microstrip-line integrated circuits (IC’s)
were studied extensively, even though they suffer from relatively
low efficiency. Unlike MIC-type filters, dielectric resonators are
commonly used to realize bandpass or band-reject filters at microwave
frequencies with fairly high efficiency [1]. They are easy to manufac-
ture, light weight, fairly small in size, and have highQ’s. All these
properties make them popular in microwave applications.

Typical materials that are used to make many resonators are high
dielectric-constant ceramics, which can exhibit uniaxial anisotropy.
The analysis of isolated isotropic resonators or those placed in a
practical circuit environment is fairly extensive, ranging from analytic
to general numerical methods [2]–[8]. On the other hand, only a
limited amount of work on anisotropic resonators has been reported to
date [9], though the finite-difference time-domain (FDTD) approach
presented in [8] can also be applied to electrically and magnetically
biaxial materials.

This paper describes the analysis of cylindrical resonators that are
made of ferrites, which are characterized by Hermitian permeability
tensors [10]. It exploits generalized impedance boundary conditions
(GIBC’s) that were originally proposed in [11] and later implemented
for isotropic dielectric resonators in [7]. GIBC’s are used to sim-
plify the boundary-value problem, making it possible to derive a
transcendental equation for the axial dependence of the fields. The
analysis is restricted to the approximate dominant quasi-TE mode
of the cylindrical resonator, though this approach is valid for other
modes as well. The radiation modes are neglected, since the structure
is partially shielded and, hence, their contributions are small [7].
The proposed approach is validated for the same approximate quasi-
TE modes of a ferrite post sandwiched between two infinitely large
perfectly conducting planes. Numerical data are provided showing
the dependence of the resonant frequency of the substrate-mounted
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Fig. 1. Geometry of the substrate-mounted ferrite resonator.

Fig. 2. Geometry of the equivalent boundary-value problem after application
of GIBC’s.

ferrite resonator as a function of applied biasing field, magnetization,
and structural dimensions.

II. FORMULATION OF THE BOUNDARY-VALUE PROBLEM

Consider a cylindrical resonator (shown in Fig. 1), which is
mounted on a grounded dielectric substrate and is covered with
a metallic tuning plate. The resonator is composed of ferrite, which
is characterized by a Hermitian permeability tensor([�]) and a scalar
dielectric constant("r). The biasing field is assumed to bez-directed,
which leads to the presence ofxy–yx off-diagonal elements in[�].
Though this structure is highly symmetric and conforms well to
the cylindrical coordinate system, exact analytical solution of this
problem is very difficult. The difficulties stem from the need to
enforce the boundary conditions atz = h and h + d in the radial
plane of the geometry.

If well-defined boundary conditions at these two planes were
known (e.g., for a resonating post placed between two metallic
planes), then the analytical solution to this problem would become
straightforward. The use of GIBC’s permits a reduction of a complex
problem (shown in Fig. 1) to a simpler problem (shown in Fig. 2).
GIBC’s provide for the boundary conditions atz = h andh+d, which
take into account the presence of the grounded substrate and tuning
plate. Note that the boundary conditions are only needed for the axial
components of the fields(Ez ; Hz) since the transverse components
can be expressed in terms ofEz andHz . As it is well known that a
dominant mode of operation for the circular resonator is of the quasi-
TE type(Ez � 0) [12], all subsequent analyses will be restricted to
only this field distribution. In addition, unlike the work on GIBC’s for
isotropic dielectrics presented in [7], the procedure for deriving them
for ferrites is presently unavailable and, hence, will be presented
below.

To that end, the boundary conditions onHz at the end caps
of the resonator must be obtained first. This can be achieved by
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expanding the tangential components of theE-field at the surface of
the metal in Taylor series and relating them toHz at z = h� and
z = (h+d)+. As shown in [7],Ex andEy, which are zero atz = 0
andz = (h+ d+ t), can be expanded in terms of Taylor series. The
odd and even derivatives in this expansion are kept separately since
the procedure for obtaining them is not the same.

The boundary condition for the odd derivatives ofHz at z = h
can be obtained from thex- andy-components of Faraday’s law as
follows:
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In the above equations, the permeability tensor[�] has the following
form:

[�] =
� j� 0
�j� � 0
0 0 �0

(3)

whose elements and a way to measure them are given in [10] and
[13], respectively.

The next step is to express thez-derivatives ofEx andEy just
within the substrate(z = h�) in terms of fields just within the
resonator(z = h+). This is accomplished by taking into account the
fact that for the quasi-TE modeEz � 0, and thatHx andHy must
be continuous atz = h (or z = h�). With this information, (1) and
(2) can be rearranged, leading to
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Note that the above expressions are only approximate equalities due
to the assumed quasi-TE modal field distribution. However, for the
sake of clarity, they will be replaced with equalities in a subsequent
discussion.

To complete the derivation of the relationship between the odd
derivatives ofHz at the substrate–resonator boundary, the following
combination of derivative operations must be performed:
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which, after changes in the order of differentiation, leads to
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The terms in parentheses can be replaced with the axial components of
the fields, as they are proportional to thez-components of Faraday’s
and Ampere’s laws, yielding
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where, once again,Ez � 0 was taken into account. It is important
to add that the same result cannot be obtained by differentiating the
boundary condition onBz at z = h. The reason for this being that
Bz and not @Bz=@z is continuous at the boundary. It should be
emphasized that the relationship stated in (7) was derived from the
tangential components of theE-field and contains information on
their behavior (by way of the Taylor-series expansion) at the surface
of the metallic ground plane.

The corresponding boundary conditions between even derivatives
of Hz (with respect toz) at z = h can be derived with the help of
the vector-wave equation for~E andr� ~D = 0, keeping in mind that
under the quasi-TE mode assumption,Ez � 0. As a result, within
the ferrite resonator, the coupled-wave equations forEx andEy are
given by
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where�e = �2��2. On the other hand, inside the isotropic dielectric
substrate, the wave equations forEx andEy are not coupled and
have the following simple forms:
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At this point, the derivatives ofEx andEy with respect tox and
y can be eliminated from (8) and (9) by recognizing that atz = h,
bothEx andEy are continuous, as are their transverse derivatives.
As a result, the explicit relationships between thez-derivatives ofEx

andEy at the boundary can be found in (10), shown at the bottom
of this page.

Next, the same set of operations as given in (5) [but with (4)
replaced with (10)] are repeated to obtain (11), shown at the bottom
of this page. However, sinceEz = 0, the second term (more
specifically, its derivative with respect toz) on the right-hand side
of (11) vanishes. The remaining terms in the parentheses should be
recognized as being proportional toHz , which allows for rewriting
(11) as
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Equations (7) and (12) can now be used to determine the higher
order odd and evenz-derivatives ofHz , which can be written as
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When these expressions are added together, they represent the
boundary conditions onEx andEy at z = 0 “translated” by way
of Taylor-series expansions toz = h. Through the use of Maxwell’s
equations, this information was used to determine the appropriate
boundary conditions (or GIBC’s) forHz at the substrate–resonator
interface. It should be pointed out that odd and even derivatives in
(13) sum up to closed-form expressions of sine and cosine functions,
leading to the following final form of GIBC’s forHz :
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Note that when the same procedure is repeated for the interface
between the air-gap and top end-cap of the resonator, an identical
form of the GIBC will be obtained, except thath and "rs will be
replaced witht and 1, respectively.

Now that the GIBC’s forHz along the axial direction have
been determined, the boundary condition along the radial direction
is required to complete the solution of the problem. The radial
dependence ofHz inside the resonator can be determined from the
following equation:
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It is assumed that thez-dependence ise�j�(z�h), the field is
azimuthally symmetric and corresponds to the quasi-TE10 mode
(Ez � 0). The solution to (15) inside and outside the resonator
is given by
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where 
2 = (k20"r � �0�
2�) and �2 = (�2 � k20). When the

continuity ofHz andE' at � = a is enforced (noting that for this
modeE� � 0 andH' � 0), the following transcendental equation
for the radial dependence of the field is obtained:
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The second transcendental equation is found by applying GIBC’s
to Hz at z = h andh + d using the field expressions in (16). This
leads to the following set of linear equations:
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whose determinant must vanish to avoid a trivial solution. The
(G+

serh) term is obtained from (14) by replacing@=@z with j�; while

TABLE I
VALIDATION DATA FOR THREE DIFFERENT RESONATORS.

(*NUMBERS IN PARENTHESESCORRESPOND TOGIBC APPROACH)

a (mm) d (mm)
fo @

500 Oe
fo @

1000 Oe
fo @

2000 Oe

Case 1 7.49 7.48 6.15
(6.16)*

6.50
(6.51)

6.77
(6.78)

Case 2 7.00 6.95 6.60
(6.61)

6.98
(6.98)

7.26
(7.27)

Case 3 3.85 3.41 12.63
(12.64)

13.45
(13.46)

14.07
(14.08)

for (G+
serd), h must also be replaced witht. Finally, the complete

expression for the determinant of the above matrix system can be
written as
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At this point, the resonant frequencies of the structure shown in
Fig. 1 (or its field equivalent, shown in Fig. 2) can be determined by
simultaneously solving (17) and (19).

III. N UMERICAL RESULTS

The resonant properties of three different resonators, whose dimen-
sions are listed in Table I, were investigated in this paper.

The dielectric constants of the substrate and resonator were taken
to be "rs = 2:54 and "r = 15, respectively, with the saturation
magnetization of the ferrite being4�Ms = 500 G. The resonant
frequencies were computed first for the quasi-TE10 mode of a
circular ferrite post, which is an approximation to theHE11 mode
of a ferrite rod [14]. The post is sandwiched between two infinitely
large perfectly conducting plates (as in Fig. 2, with GIBC planes
replaced by perfect electric conductor (PEC) planes). These results
were compared to those calculated with the help of GIBC’s for the
resonant structure shown in Fig. 1, when botht and h are 1�m.
Sincefo for the post, whose end-caps are touching the metal plates,
the resonant frequencies can be computed analytically, it serves as
a validation example for the computations made with the use of
GIBC’s.

As can be seen from Table I, the agreement between the GIBC for-
mulation and solution to the “shorted” post boundary-value problem
(as a function of the applied bias field) is very good. The differences
were typically in the third decimal place, and were rounded off for
presentation. In general, the GIBC-based approach leads to higher
values forfo, which can likely be attributed to the fact that both the
tuning plate and ground plane were located 1�m from the resonator.

To illustrate the resonant behavior of ferrite substrate-mounted
resonators, the resonant frequencies were calculated and plotted in
Figs. 3–5 for all three resonators (cases 1–3 withh, t = 0:7, 0:72,
0:7, 1:25, and0:254, 5:0 mm, respectively) as functions of the bias
field for different values of the saturation magnetization4�Ms. Note
that the most rapid variation in the resonant frequency occurs at low
values of the biasing field, gradually approaching asymptotic values
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Fig. 3. Resonant frequency of the first resonator (case 1) as a function of
applied bias field.

Fig. 4. Resonant frequency of the second resonator (case 2) as a function
of applied bias field.

Fig. 5. Resonant frequency for the third resonator (case 3) as a function of
applied bias field.

with the increasing field. In addition, the highest resonant frequencies
are associated with the lowest values of4�Ms.

Next, a study was performed to assess what happens as the aspect
ratio of radius-to-resonator height(a=d) changes. Fig. 6 shows the
variation of the resonant frequency for the first resonator (case 1), for
which the substrate thickness and displacement of the tuning plate are

Fig. 6. Resonant frequency of the first resonator as a function of aspect ratio.

Fig. 7. Resonant frequency for the third resonator as a function of tuning
plate location.

0.7 and 0.72 mm, respectively. As can be seen, the resonant frequency
is more sensitive to the changes in the geometry at lower bias field
values and, in general,fo decreases as eitherd=a or a=d increase.
It is interesting to note that the biasing field affects the change in
frequency(�fo) differently at high and low values of thea=d and
d=a ratios (see pointsA andB in Fig. 6).

Finally, the effect of the tuning plate on the resonator was con-
sidered. This time, the resonant frequencies of the ferrite post with
smallest dimensions (case 3) were calculated as a function of the
applied bias field, while the tuning plate was gradually moved
further away from the resonator. The results are summarized in
Fig. 7, showing that, as expected, most of the interaction between the
resonator and tuning plate occurs while both are in close proximity. In
addition, it is also evident that the greatest variation info is associated
with low values of the biasing field.

IV. CONCLUSION

A semianalytical approach was presented for the analysis of
substrate-mounted cylindrical ferrite resonators. The use of GIBC’s
was utilized in problems involving magnetically anisotropic media.
The approach was validated for a special geometry, having an
approximate analytical solution. Numerous data were presented for
ferrite resonators as function of the applied biasing field, changing
geometrical dimensions, and location of the tuning plate.
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Analysis of Propagation Characteristics and
Field Images for Printed Transmission Lines on

Anisotropic Substrates Using a 2-D-FDTD Method

Ming-sze Tong and Yinchao Chen

Abstract—In this paper, we apply an efficient two-dimensional (2-
D) finite-difference time-domain (FDTD) algorithm onto an analysis of
uniform transmission lines printed on various anisotropic substrates. By
investigating the transverse resonant properties of the structures, we
obtain their propagation characteristics, as well as the field images at
specified frequencies. To eliminate the Gibbs phenomenon generated by
a sudden time-stepping termination, we employ the Blackman–Harris
window (BHW) function to truncate and modulate the entire time-
domain fields, which leads to a significant time saving by comparing the
conventional time-stepping termination.

I. INTRODUCTION

The finite-difference time-domain (FDTD) method is a very power-
ful technique in solving the Maxwell’s equations related to boundary-
value problems, especially the transmission-line problems, conven-
tionally by using three-dimensional (3-D) techniques [1]–[3]. One
commonly known disadvantage of the conventional FDTD is that
it requires large amounts of computer central processing unit (CPU)
time and memory space to discretize all fields and medium parameters
in the entire 3-D computation domain, and to iterate the FDTD
algorithm until the fields stabilize. Recently, Xiao and Vahldieck
presented a two-dimensional (2-D) FDTD algorithm to analyze
microstrip lines, and Hofschen and Wolff improved the algorithm by
using a time-domain series technique [4], [5]. Similarly, Chen and
Mittra introduced the concept of transverse resonance to the FDTD
for transmission-line analysis, and presented a one-dimensional (1-
D) FDTD algorithm for analyzing axisymmetric waveguides [6]. In
principle, these FDTD techniques are more accurate than the 3-D
FDTD scheme for analyzing transmission lines since they take an
advantage of the analytical nature of solutions along the longitudinal
direction.

In this paper, following a similar approach used in [4]–[6], we
apply an efficient 2-D FDTD algorithm onto an analysis of various
transmission lines printed on anisotropic substrates. By investigating
the transverse resonant properties of the structures, we obtain their
propagation characteristics, as well as the field images at specified
frequencies. For efficiency and accuracy, we employ the Black-
man–Harris window (BHW) function to truncate and modulate the
entire time-domain fields rather than following the conventional
rectangular windowing time-stepping termination, which leads to a
significant time saving by reducing the total number of iterations.

II. FDTD ALGORITHM AND IMPLEMENTATION

To ensure that the Maxwell’s equations to be discretized are in the
form of the FDTD algorithm which contains only real variables, we
represent the field quantities in the form

E(r; t)

H(r; t)
=

[jEx(x; y; t); jEy(x; y; t); Ez(x; y; t)]
[Hx(x; y; t); Hy(x; y; t); jHz(x; y; t)]

�e
�j�z

:

(1)
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